Relativitáselmélet középszinten - 10.2. kitérő
283
Relativitáselmélet középszinten - 10.2. kitérő
Levezetjük a relativisztikus sebességösszeadás képletét a Lorentz-transzformáció felhasználásával. Megmutatjuk, hogy a sebességparaméterek egyszerűen összeadódnak, ezekre nem kell alkalmazni a relativisztikus sebességösszeadás bonyolultabb képletét. Igazoljuk, hogy a Lorentz-transzformáció forgatást jelent a téridőben. Megvizsgáljuk a sebességösszeadás általános képletének és a hiperbolikus geometriának a kapcsolatát. Bevezetjük a hiperbolikus sebesség fogalmát. A hiperbolikus sebességek összegének nagyságát a hiperbolikus geometria koszinusztételével lehet meghatározni. Megvizsgáljuk az egyirányú, illetve merőleges sebességek esetét. Végül megmutatjuk, hogy a hiperbolikus sebességek terének görbületi sugara a fénysebességgel egyezik meg. A relativisztikus sebességösszeadás és a hiperbolikus koszinusztétel: elérhető a Letöltés gombra kattintva A relativisztikus sebességösszeadás általános képletének levezetése: https://en.wikipedia.org/wiki/Velocity-addition_formula Megjegyzés 5:08 Lásd: http://videotorium.hu/hu/recordings/38373 12:25 13:10 Vegyük a gyökös egyenlet reciprokát és emeljük négyzetre mindkét oldalt. A zárójeleket felbontva, majd rendezve az egyenletet kapjuk a relatív sebességekre vonatkozó alakot. 14:52 Pontosabban fogalmazva: így az utasnak a vonat mozgásirányára merőleges elmozdulása ugyanakkora a vonathoz, mint a Földhöz viszonyítva.
több